User seoochre | Upvoted | Dofollow Social Bookmarking Sites 2016
Facing issue in account approval? email us at info@ipt.pw

Click to Ckeck Our - FREE SEO TOOLS

Ads Listing ALL

Avatar
Seoochre

0 Following 0 Followers
1
Continuous manufacturing provides a new paradigm for biotherapeutics manufacturing. It has been shown to deliver high productivity (10-15X), lower cost of goods (by 50-75 per cent), and a more consistent product quality. This article highlights the key benefits of continuous processing for production of biotherapeutic products as well as the challenges that a practitioner is likely to face and solutions that are available today. It is emphasised that a centralised control platform for an integrated bioprocess is essential for real time data acquisition and on-line process control.
1
For centuries naturalist collected and curated various flora and fauna from around the world with the idea that these collections would provide important information about natural world. Biobanking was started with a similar purpose like collection of biospecimen as an inventory to be utilised for scientific research. The modern era of biobanking can be traced to have originated during the Cold War by anthropologists who had begun to collect and store blood and tissue samples from indigenous communities. They collected the samples fixated on the fact that these samples contained vital clues a
1
Polysaccharide derivatives are extensively used in chiral stationary phases. They provide multiple advantages including broad enantioselectivity, better resolution ability, easy availability, and high loadability under preparative separation conditions. Commercially available chiral stationary phases (CSPs) of this type are usually coated onto a silica matrix (or) covalently bonded to the silica matrix (immobilized). However, coated CSPs swell or dissolve and finally destroy the enantioselective capacity of the phase with some forbidden organic modifiers. The use of forbidden organic modifier
1
In drug discovery, the chances of discovering a compound that produces the desired impact on the target is very low, so scientists typically check hundreds of thousands of potential compounds. This screening process, due to the high volume, is known as high throughput screening (HTS).

Automation plays a key role in HTS. Robotics and other forms of automation technology are a key part of any HTS system. Robots will transport assay plates from station to station and specialised automation analysis will often be used to run experiments on the wells. For example, measuring reflectivity to show
1
While the life sciences sector has incrementally adopted digital technologies over the years, the rate of digital transformation over the next five years looks to be unprecedented. Collaborations and acquisitions in the pursuit of digital transformation have accelerated significantly. In 2018, US$9.5 billion was invested in the digital health sector over 698 deals. From the FDA approval of Otsuka’s sensor embedded drug Abilify Mycite and the approval of Pear Therapeutics’ app for the treatment of opioid abuse, through to Takeda’s partnership with Emulate Inc for the use of organs on chips for
1
Causality assessment, which determines the relationship between a drug and an adverse event, is critical in safety vigilance. It helps identify new signals, measure the strength of evidence, and evaluate the benefit-risk profile of pharmaceutical medicinal products. This process has traditionally been performed manually by experts, but the emergence AI/ML technologies present an opportunity to automate it. This article will explore the various AI/ML models and methods that can be used to implement automated causality assessment in safety vigilance, along with the challenges and opportunities
1
Digital transformation in the pharma industry involves the use of technology to streamline operations, enhance patient engagement, and improve the efficiency of clinical trials. It also involves the adoption of different methods like data analytics and integration, artificial intelligence, machine learning, cloud computing, and services, etc. to drive innovation and improve patient outcomes.

The pharmaceutical industry has been a pillar of healthcare for decades, but with the advancement of digital technologies, it is undergoing a major transformation. Digital technologies have the potenti
1
Artificial intelligence (AI) has revolutionized the pharmaceutical industry by providing innovative solutions in drug discovery, design, and manufacturing. In recent years, AI has become increasingly useful in drug manufacturing, offering several benefits such as increased speed, efficiency, accuracy, and cost-effectiveness. AI techniques, such as machine learning, natural language processing, and deep learning, are being used to mine vast amounts of data and extract meaningful insights that aid in drug development.
1
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS) are a group of age-related progressive disorders initiated by the neuronal loss that eventually leads to cognitive and movement disorders. These diseases are thought to be caused by alterations to protein-coding genes. Non-coding RNAs participate in translational regulation and comprise 95 per cent of total human cellular RNAs (Figure 1)

PostmortemContol and AD brain - (A, B) represents post mortem formalin fixed human brain whole (A) or
1
Menarini Asia-Pacific is just over a decade old, having established its regional headquarters in Singapore back in November 2011. Over the past decade, the island-nation’s positioning has changed from just a pharmaceutical manufacturing outpost to an international biomedical hub that encompasses the entire innovation and manufacturing value chain.

Globally, there remains an unmet need for advanced research in healthcare biotechnology and diagnostics. Singapore’s reputation for quality research and development (R&D), supportive operating environment, and talent pool made it an easy decision
1
mRNA is a type of nucleic acid molecule that plays an essential role in the natural processing of genetic information. Using modern tools of molecular biology and genetic engineering, it is now possible to design synthetic mRNA molecules capable of executing an astonishing array of therapeutic functions. Advances in nanotechnology are starting to enable safe and effective delivery of therapeutic mRNA for the treatment of acquired and inherited conditions and for prevention of infectious disease.
1
It’s been nearly two years since the outbreak of COVID-19 began and we’re still in the midst of enormous disruptions to the world’s economies, businesses, education, and people’s lives. The pharmaceutical industry has been particularly disrupted. Previously, pharma companies suffered from a bad reputation. But following the emergence of the pandemic, they were thrown into the spotlight, suddenly having an important voice on the health of the world. Leaders in the pharma space were on the front cover of every newspaper and magazine not because of scandal, but because of the lifesaving treatmen
1
The Global Biosimilars Market is estimated to reach US$240 billion by 2030, with the Indian market at US$35 billion. The considerable increase in reference products, with the USFDA adding 90 molecules and India approving 70 biosimilars, promises to usher in further growth. The Biopharma industry seems keen on investing in the biosimilar market with a focus on improving healthcare and health care costs for diseases of interest like COVID-19, cancer, immunologic diseases, and diabetes. This is evident in the projected growth of the oncology biosimilar market at 17 per cent CAGR, and the growing
1
The drug business has various strange qualities that make it very different from individuals' thought process of as industry. Its additionally an industry packed with logical inconsistencies; for instance, notwithstanding the undisputed reality that for more than a century the business has made a major contribution to human prosperity and the decrease of chronic sickness and suffering, it is still routinely recognized bygeneral society in assessment reviews as one of the most un-confided in ventures, frequently being contrasted horribly with the atomic business. It is without a doubt perhaps
1
Similar to the restrictions provided under HGRAC Regulation, the Biosecurity Law confirms that foreign persons are generally prohibited from collecting or preserving HGR in China or providing HGR abroad. Foreign persons will have limited rights to acquire and/or use China’s HGR through scientific research activities conducted in collaboration with Chinese entities but only with the prior approval of China’s Ministry of Science and Technology (MOST). The only exception to the requirement of obtaining approval is for clinical trials conducted through international cooperation at clinical trial
1
In the ever-evolving realm of pharmaceutical research and development (R&D), the powerful wave of digitalization is restructuring conventional methodologies and paving the way for a novel era of ingenuity and streamlined processes. Termed digital transformation, this profound shift entails the strategic infusion of cutting-edge information technologies into established drug discovery and development procedures. Leading this revolution are technologies like big data analytics, artificial intelligence (AI), blockchain, and telemedicine. Digital transformation signifies a potential revolution in
1
Nanomaterials have been one of the most exciting scientific and technical innovations of the past few decades. Due to their very high surface to volume ratios, they exhibit properties that can differ dramatically from those for the same material in bulk. This, and their ability to be designed and synthesized with multiple surface functionalities, has seen them used for a myriad of bespoke applications in industry and medicine.

Their medical applications span delivery systems for drugs, proteins and DNA/RNA to diagnostics, targeted cancer treatments, to theranostics. They have been used ver
1
Clinical trials are an essential part of the development of new medical treatments and procedures, and they help to ensure that new interventions are safe and effective for patients above all. Because of that, it is really important that all steps in that process were done with special attention to patient safety above all, but also to the accuracy of data that is often still collected manually, which slows down the entire process, and sometimes even compromises it, which result with the fact that clinical trials are exposed to frequent audits precisely for this reason.

Although clinical t
1
While traditional vaccine modalities continue to play an important role, 87% of the respondents intend to focus on mRNA and the majority believe this modality will dominate the future vaccine landscape. Most manufacturers stated an intent to establish capabilities in novel vaccine platforms and indicated that both traditional and modern cell-based vaccines remain important given their proven regulatory record, high efficacy, and generally fewer side effects.

Given the protection offered by the SARS-CoV-2 mRNA vaccines and the accelerated development timelines, it’s no surprise that this mo
1
This article explores the profound impact of bioinformatics in the realm of precision oncology, revolutionising the understanding, diagnosis, and treatment of cancer. Bioinformatics, a multidisciplinary field, bridges the gap between vast biological datasets and meaningful insights, enabling personalised therapies and groundbreaking discoveries. However, challenges in data integrity, reproducibility, and infrastructure must be overcome to fully realise it’s potential. Bioinformatics stands as a beacon of hope, ushering in an era where cancer is decoded at its molecular core, promising improve